650-655 (1967) vol. 40 BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN

The Redistribution Reaction of Ethyl Groups and Chlorine Atoms in the Ethylaluminum Chloride + Ether System*1

Ryokichi Tarao and Saburo Takeda

Research Center, Chisso Co., Ltd., Kanazawa-ku, Yokohama

(Received September 8, 1966)

The redistribution reactions of ethyl groups and chlorine atoms in the 2AlEt_nCl_{3-n}+ether system were studied by the Raman spectroscopic method. It was found that the reaction of AlEtCl₂ with Et₂O (molar ratio, 2:1) gave rise to AlEt₂Cl and AlCl₃·Et₂O, although not quantitatively. On the contrary, the reaction of AlEt₂Cl with Et₂O (molar ratio, 2:1) did not produce any AlEt3 or AlEtCl2·Et2O at all. These and several related observations demonstrate that, by the reaction between AlEt_nCl_{3-n} and AlEt_mCl_{3-m}·Et₂O (n, m=0, 1, 2, 3), AlEt₂Cl is preferentially produced as long as there is any possibility of its formation.

In 1963 Zambelli and his co-workers reported that a redistribution reaction*2 of ethyl groups and chlorine atoms (Eq. (1)) took place in the 2AlEtCl₂+electron donor (e.g., pyridine) system to produce AlEt₂Cl and AlCl₃·donor complex:¹⁾

$$2AlEtCl2 + D \rightarrow AlEt2Cl + AlCl3·D$$
 (1)

(D=an electron donor substance)

It is still uncertain, however, whether or not the reaction (1) takes place with donor substances in general. For example, in 1965 McConnell and his co-workers reported that the reaction (1) did not take place when hexamethylphosphoramide (HPT) was used as D; they based this conclusion on their study of the infrared spectrum of the 2AlEtCl₂+HPT system.²⁾

This study will do the following things concerning these redistribution reactions using the Raman spectroscopic method, which is far more suited than the infrared method to examining these systems, which are very sensitive to air and moisture;

- i) Measure the Raman spectra of AlEtCl₂ and AlEt_{1.5}Cl_{1.5} (sesquiethylaluminum chloride).
- ii) Make sure that the reaction (1) really takes place when pyridine is used as D, and examine whether or not the reaction (1) also takes place when donor substances other than pyridine are used.
- iii) Clarify such points as this: AlEt2Cl and AlEtCl₂ have been considered to form the equimolar complexes AlEt₂Cl·Et₂O and AlEtCl₂·Et₂O

respectively with Et2O.33 By taking into consideration the fact that the reaction (1) takes place, however, it may still be possible that the AlEtCl2. Et2O complex is actually an equimolar mixture of the AlEt2Cl·Et2O and AlCl3·Et2O complexes.

iv) See whether reactions similar to the redistribution reaction (1), for example, the reaction (1'), take place or not, by using Et₂O as D.

$$2AlEt_2Cl + D \rightarrow AlEt_3 + AlEtCl_2 \cdot D \qquad (1')$$

Our results will be described below.

Experimental

Materials. Commercial AlEt3, AlEt2Cl, AlEt1.5-Cl_{1.5} and AlEtCl₂ were distilled in vacuo just before use. Commercial AlCl₃ was used without further purification. Hexamethyldisiloxane (Me₃SiOSiMe₃), pyridine, and Et2O were purified by the usual methods.

Measurement of Spectra. The Raman spectra were measured in the 3000—130 cm⁻¹ region in the liquid state with a Shimadzu GRS Raman spectrophotometer. All the samples were distilled into Raman tubes under a high vacuum; the tubes were then sealed off under reduced pressure to prevent contamination with air and moisture. It was necessary in most cases to heat the sample (maximum: 100°C) to distil it, even under a high vacuum (10-3-10-4 mmHg).

The Reaction of AlEtCl₂ with Pyridine. To 20.0 g of AlEtCl₂, 6.2 g of pyridine were added drop by drop under an atmosphere of nitrogen at the temperature of a dry ice-methanol mixture (molar ratio, AlEtCl₂: pyridine=2:1). A considerable evolution of heat was observed. The reaction mixture was then distilled in vacuo (2.5 mmHg).

 $9.2 \, {\rm g}$ Distillate (bp 40-47.5°C) 17.0 g Residue Total

The distillate, a colorless liquid, was distilled into a 6 ml Raman tube and sealed off; this fraction did not freeze at the temperature of a dry ice-methanol mixture.

^{*1} Presented at the Symposium on Organometallic

Compounds, Osaka, October, 1966.

*2 The term "dismutation" has often been employed. In this paper, however, the term "redistribution reaction" will be preferred in order to emphasize the more general nature of the reaction.

¹⁾ A. Zambelli, J. Dipietro and G. Gatti, J. Poly. Sci., A1, 403 (1963).

²⁾ R. L. McConnell, M. A. McCall, G. O. Cash, J., F. B. Joyner and H. W. Coover, Jr., *ibid.*, A3, Jr., F. в. ј. 2135 (1965).

³⁾ S. Takeda and R. Tarao, This Bulletin, 38, 1567 (1965).

The distillation residue crystallized to white crystals at room temperature.

The Analyses of the Lower-boiling Fraction of the 2AlEtCl₂+Et₂O System. To 11.0 g of AlEtCl₂, 3. 2g of Et2O was added drop by drop under an atmosphere of nitrogen with cooling (molar ratio, AlEtCl₂: Et₀O=2:1). The reaction mixture (11.2 g) was fractionated by distillation into a lower-boiling fraction (3.0 g, bp 95.5-96.5°C/7 mmHg) and a higherboiling fraction (6.1 g, bp 128—134°C/17 mmHg). The distillation residue and the amount lost were about 2 g. Aluminum and chlorine analyses of the lower-boiling fraction were then carried out. Found: Al, 21.4; Cl, 43.3%. By using the datum of chlorine analysis as a basis, and by postulating that the lowerboiling fraction was a mixture of AlEt₂Cl and AlEtCl₂, the AlEt₂Cl content of this fraction was calculated. The calculated AlEt2Cl content was 48.8 mol per cent. (Calcd for AlEt₂Cl: Al, 22.38; Cl, 29.41%. Calcd for AlEtCl₂: Al, 21.25; Cl, 55.86%.)

The Synthesis of AlCl₃·Et₂O. Substantially the method reported by Frankforter and Daniels was adopted.4) The purification of the product, AICI3. Et2O, was accomplished by distillation in vacuo; a distillate with bp 84-85°C/3×10-2 mmHg was thus obtained. The complex was white crystals with a mp of 36-38.5°C; the value agreed very well with the values listed in the literature.4-6)

Found: Al, 13.25; Cl, 51.25%. Calcd for AlCl₃· Et₂O: Al, 13.00; Cl, 51.27%.

Results and Discussion

The Raman Spectra of AlEt₃, AlEt₂Cl, AlEt_{1.5}Cl_{1.5} and AlEtCl₂. Among these four organoaluminum compounds, AlEt₃ and AlEt₂Cl have been studied Raman-spectroscopically by several investigators; the tentative assignments of the main Raman lines in the skeletal vibration region have also been made.7,8) As no Raman spectroscopic study has been reported for AlEt_{1.5}Cl_{1.5} and AlEtCl₂, however, the present authors have measured their Raman spectra in the present study; the spectra obtained (in the skeletal vibration region) are shown in Figs. 1c and 1d. The spectra of AlEt₃ and AlEt₂Cl, also obtained in this study, are shown in Figs. la and 1b; these spectra agree precisely with those given by Hoffmann⁷⁾ and Yamamoto.⁸⁾ It was found that the spectrum of AlEt_{1.5}Cl_{1.5} was a superposition of those of AlEt₂Cl and AlEtCl₂. The tentative assignments of the main Raman lines of AlEtCl2 in the skeletal vibration region were made as are shown below by taking the assignments given for AlEt₂Cl and AlCl₃ into consideration.

(The chlorine bridge structure was assumed for the dimer of AlEtCl₂ in assigning these lines.)

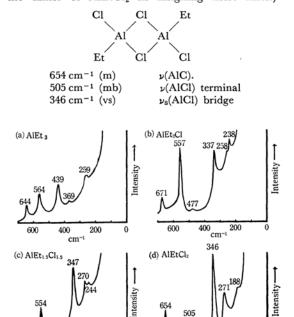


Fig. 1. The Raman spectra of AlEt3, AlEt2Cl, AlEt_{1.5}Cl_{1.5} and AlEtCl₂ in the skeletal vibration

600

From Figs. 1b and 1d it is apparent that the strong line of AlEt₂Cl at 557 cm⁻¹ (assigned to ν(AlC) A_{1g} in the literature^{7,8)} can be used as a key band of AlEt₂Cl, for AlEtCl₂ has no Raman line near 557 cm⁻¹.

The Presence of AlEt₂Cl in the 2AlEtCl₂+ Electron Donor System. Zambelli and his coworkers reported that they had distilled the product of the reaction between 2AlEtCl₂ and pyridine in vacuo and confirmed that the distillate was AlEt2Cl by the use of the results of aluminum and chlorine analyses of it.1) The present authors repeated this

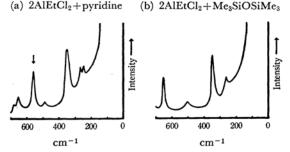


Fig. 2. The Raman spectra of the distillates from the systems

G. B. Frankforter and E. A. Daniels, J. Am. Chem. Soc., 37, 2560 (1915).

W. Menzel and M. Fröhlich, Ber., 75B, 1055

<sup>(1942).
6)</sup> G. Briegleb and W. Lauppe, Z. Phys. Chem.,

E. G. Hoffmann, Z. Elektrochem., 64, 616 (1960).O. Yamamoto, This Bulletin, 35, 619 (1962).

⁽a) 2AlEtCl₂+pyridine

⁽b) 2AlEtCl₂+Me₃SiOSiMe₃.

Table 1. Observed raman frequencies of ${\rm AlEt}_n{
m Cl}_{3-n}\cdot{\rm Et}_2{\rm O}$ $(n\!=\!0,\,1,\,2,\,3)$ and vibrational assignments*1,*2

			$AlEt_3 \cdot Et_2O$				$AlEt_2Cl \cdot Et_2O$
2981 2934 2894 2860 2784 2717	w s sh vs m w	D P P	CH str.	2979 2937 2896 2864 2790 2727	m s vw vs w	D P P	CH str.
1461	m	D	(CH ₃ degenerate deform., CH ₃ symmetric deform., CH ₂ scissors (ether)	1454	m	D	CH ₃ degenerate deform., CH ₃ symmetric deform., CH ₂ scissors (ether)
1409	w	\mathbf{D}	CH ₂ scissors (-CH ₂ -Al)	1411	w	\mathbf{D}	CH ₂ scissors (-CH ₂ -Al)
1328	w	\mathbf{D}	CH ₂ wag, CH ₂ twist (ether)	1325	w	\mathbf{D}	CH2 wag, CH2 twist (ether)
1189	m	P	CH ₂ wag, CH ₂ twist (-CH ₂ -Al), CH ₃ rock	1197	m	P	$\{CH_2 \text{ wag, } CH_2 \text{ twist } (-CH_2-Al), \\ \{CH_3 \text{ rock } \}$
1093	w	P		1091	w	P	
1036	w		CO antisymmetric str.	1023	vw		CO antisymmetric str.
992	m	\mathbf{D}	CC str.	993	\mathbf{m}	\mathbf{D}	CC str.
958	vw			954	vw		
899	w	\mathbf{D}	CO symmetric str.	892	w	\mathbf{D}	CO symmetric str.
834	w		CH ₂ rock (ether)	835 (803	w vw)		CH ₂ rock (ether)
779	w)	776	w)
638	w		AlC ₃ degenerate str.	651	w	\mathbf{D}	AlC ₂ antisymmetric str.
489	s	P	AlC ₃ symmetric str.	558	m	P	AlC ₂ symmetric str.
				410	s	P	AlO str.+AlCl str.
333	vw			336	vw		

^{*1} m, medium; s, strong; w, weak; v, very; b, broad.
*2 P, polarized; D, depolarized.

			$AlEtCl_2 \cdot Et_2O$	$AlCl_3 \cdot Et_2O$					
2985 2940 2903	s vs	D P)	2989 2942	s s	D P)		
2873 2785 2737	vw s w vw	P D	CH str.	2877 2784	w m	D	CH str.		
1455	m	D	(CH ₃ degenerate deform., CH ₃ symmetric deform., CH ₂ scissors (ether)	1453	m	D	(CH ₃ degenerate deform., CH ₃ symmetric deform., CH ₂ scissors		
1409	w	\mathbf{D}	CH ₂ scissors (-CH ₂ -Al)	1400	w	D			
1330 1290	w vw	D	CH ₂ wag, CH ₂ twist (ether)	1330	w	D	CH ₂ wag, CH ₂ twist		
1203	m	P	{CH ₂ wag, CH ₂ twist (-CH ₂ -Al), (CH ₃ rock						
1095	\mathbf{m}	\mathbf{P}		1096	\mathbf{m}	P			
999	mb	D	{CO antisymmetric str., CC str.	993	mb	D	CO antisymmetric str.,		
962	vw								
889	w	\mathbf{D}	CO symmetric str.	879	w	D	CO symmetric str.		
838 (802 771	w vw) w		CH ₂ rock (ether)	836 (804 777	w vw) w		CH ₂ rock		
639	m	\mathbf{D}	AlC str.						
493	vw		AlCl ₂ antisymmetric str.	546	wb	\mathbf{D}	AlCl ₃ degenerate str.		
410	s	P	AlCl ₂ symmetric str.						
355	vw			409	s	\mathbf{P}	AlCl ₃ symmetric str.		
327	w	\mathbf{D}							
276	w	\mathbf{P}		324	s	P	AlCl ₃ symmetric deform.		

reaction under similar conditions and measured the Raman spectrum of the distillate. The results are shown in Fig. 2a. It was found that the distillate surely contains AlEt₂Cl; for the 557 cm⁻¹ line of AlEt₂Cl obviously appears (marked in Fig. 2a by an arrow). Therefore, there is no doubt that AlEt₂Cl is produced in this system, as Zambelli and his co-workers stated. By comparing the intensities of the 557 cm⁻¹ and 340 cm⁻¹ lines with each other, it was found that the sample is not pure AlEt₂Cl but approximately an equimolar mixture of AlEt₂Cl and a considerable amount of AlEtCl₂.

As will be described below, when Et₂O was used as D in place of pyridine, similar results were obtained (Fig. 5b). When Me₃SiOSiMe₃ was used as D and treated with AlEtCl₂ (molar ratio, AlEtCl₂: Me₃SiOSiMe₃=2:1), however, the spectrum of the distillate showed no line at 557 cm⁻¹ (Fig. 2b). Thus it has been found that the reaction (1) sometimes takes place and sometimes does not, depending on the nature of D, and that the reaction (1) does not proceed quantitatively, but rather stops at the point by which about a half of the AlEtCl₂ initially present has turned to AlEt₂Cl+AlCl₃·D, even if pyridine or Et₂O is used as D.

The Raman Spectra of $AlEt_nCl_{3-n} \cdot Et_2O$ (n=0, 1, 2, 3). The infrared and Raman spectra of AlEt₃·Et₂O were investigated by Hoffmann.⁷⁾ The infrared spectrum of AlCl₃·Et₂O was studied by Lewis and his co-workers,9) and the Raman spectrum, by Briegleb and Lauppe. 6) The infrared spectra of AlEt₂Cl·Et₂O and AlEtCl₂·Et₂O have been reported by the present authors,3) but their Raman spectra have never been reported. The Raman spectrum of AlCl₃·Et₂O was studied by Briegleb and Lauppe about 30 years ago; it no longer seems very reliable. Therefore, in this study the Raman spectra of AlCl₃·Et₂O, AlEt₂Cl· Et₂O, and AlEtCl₂·Et₂O were reinvestigated to obtain more reliable data. The Raman spectra of those four compounds, AlEt₃·Et₂O, AlEt₂Cl·Et₂O, AlEtCl₂·Et₂O, and AlCl₃·Et₂O, and the tentative assignments of the main Raman lines observed are shown in Table 1 and in Figs. 3a-3d. A detailed discussion with respect to the assignments has been given previously.33 The observed spectrum of AlEt3·Et2O agrees precisely with that The observed spectra of given by Hoffmann. AlEt₂Cl·Et₂O and AlEtCl₂·Et₂O correspond quite well with the infrared data. The observed frequencies of AlCl₃·Et₂O are also given in Table 2, along with the Raman data of Briegleb and Lauppe and the infrared data of Lewis and his co-workers. Our data agree far more precisely with the infrared data than Briegleb and Lauppe's data do; therefore, our results are surely more

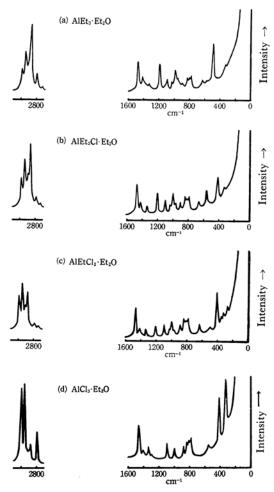


Fig. 3. The Raman spectra of AlEt₃·Et₂O, AlEt₂Cl·Et₂O, AlEtCl₂·Et₂O and AlCl₃·Et₂O.

reliable. For the sake of comparison the Raman spectrum of Et2O measured by the present authors is shown in Fig. 4. It is well known that AlEt₃ and AlCl₃ form stable 1:1 coordination complexes with Et₂O, AlEt₃·Et₂O and AlCl₃·Et₂O respectively.4,10) Similarly, the present authors have considered that AlEt₂Cl and AlEtCl₂ form stable 1:1 coordination complexes with Et₂O, AlEt₂Cl· Et₂O and AlEtCl₂·Et₂O respectively.³⁾ By taking into consideration the fact that the reaction (1) proceeds when D=Et2O, however, there seems to be at least some possibility that the actual entity of the substance hitherto regarded as AlEt2Cl- Et_2O is a $AlEt_3 \cdot Et_2O + AlEtCl_2 \cdot Et_2O$ or $2AlEt_3 \cdot$ Et₂O+AlCl₃·Et₂O mixture and that the entity of AlEtCl₂·Et₂O is a AlEt₂Cl·Et₂O+AlCl₃·Et₂O or AlEt₃·Et₂O+2AlCl₃·Et₂O mixture. In order to clarify these points, the spectra obtained (Figs. 3a-3d, each sample was an equimolar mixture

⁹⁾ J. Lewis, J. R. Miller, R. L. Richards and A. Thompson, *J. Chem. Soc.*, **1965**, 5850.

¹⁰⁾ E. B. Baker and H. H. Sisler, J. Am. Chem. Soc., 75, 4828 (1953).

Table 2. The vibrational spectra of AlCl₃·Et₂O

IR (Lewis et al.9)		Ram: (This s		Raman (Briegleb et al.6))			
2985	s	2989	s	2976	(10)		
2940	w	2942	s				
2887	w	2877	w	2901	(10)		
		2784	m				
1440	s	1453	m	1450	(5b)		
1395	s	1400	w				
1334	m	1330	w				
1285	m			1262	(2)		
1192	s			1206	(1)		
1146	s						
1091	ms	1096	m				
				1054	(4)		
1000	vs	993	mb				
876	s	879	w	891	(4)		
834	m	836	w	823	(3)		
790	w	804	vw				
765	s	777	w				
				690	(2b)		
				625	(4)		
535	s	546	wb	534	(6)		
408	s	409	s	406	(10)		
		324	s	310	(8)		

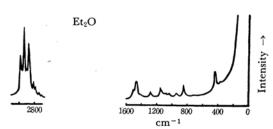


Fig. 4. The Raman spectrum of Et₂O.

of AlEt_nCl_{3-n} and Et₂O) were compared with each other. The spectrum of AlEt₂Cl·Et₂O (Fig. 3b) is entirely different from the superposition of the spectra of Figs. 3a and 3c, or Figs. 3a and 3d. For example, the strong 489 cm⁻¹ line of AlEt₃·Et₂O (Fig. 3a) does not appear in Fig. 3b. Similarly, the spectrum of AlEtCl₂·Et₂O (Fig. 3c) is entirely different from the superposition of the spectra of Figs. 3b and 3d, or Figs. 3a and 3d. These facts decisively suggest that an equimolar mixture of Et₂O and AlEt₂Cl (or AlEtCl₂) forms a stable coordination complex, AlEt₂Cl·Et₂O (or AlEtCl₂·Et₂O).

In connection with these findings, it was found that the following reactions, (2) and (3), proceeded quantitatively to the right:

 $AlEt_3 \cdot Et_2O + AlEtCl_2 \cdot Et_2O \rightarrow$

$$2AlEt_2Cl \cdot Et_2O \qquad (2)$$

$$AlEt_2Cl \cdot Et_2O + AlCl_3 \cdot Et_2O \rightarrow$$

$$2AlEtCl_2 \cdot Et_2O \qquad (3)$$

The spectra of these systems were just the same as those of AlEt₂Cl·Et₂O (Fig. 3b)—reaction (2)—and AlEtCl₂·Et₂O (Fig. 3c)—reaction (3).

The Redistribution Reaction of Ethyl Groups and Chlorine Atoms in the Ethylaluminum Chloride+Ether System. In an earlier section it was described that, when pyridine or Et₂O was used as D, the reaction (1) undoubtedly took place. To elucidate this phenomenon more thoroughly, the Raman spectra of several systems represented as $AlEt_nCl_{3-n} + AlEt_mCl_{3-m} \cdot Et_2O$ (n, m =0, 1, 2, 3) were measured (shown in Figs. 5a-5f, and Figs. 6a and 6b); the results are summarized in Table 3. The following conclusions can be drawn from this table. The reaction (4) takes place, turning almost a half (48.8 per cent) of the AlEtCl₂ initially present into AlEt₂Cl and giving a mixture of the four chemical species, AlEtCl₂, AlEt₂Cl, AlEtCl₂·Et₂O and AlCl₃·Et₂O:

$$\begin{aligned} \text{AlEtCl}_2 + \text{AlEtCl}_2 \cdot \text{Et}_2 \text{O} &\rightarrow \\ \text{AlEt}_2 \text{Cl} + \text{AlCl}_3 \cdot \text{Et}_2 \text{O} \end{aligned} \tag{4}$$

On the contrary, the similar reaction (5) does not take place at all:

$$AlEt_2Cl + AlEt_2Cl \cdot Et_2O \longrightarrow AlEt_3 + AlEtCl_2 \cdot Et_2O$$
(5)

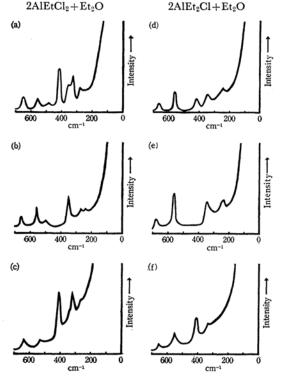


Fig. 5. The Raman spectra in the skeletal vibration region of the systems 2AlEtCl₂+Et₂O (a, b, c) and 2AlEt₂Cl+Et₂O (d, e, f).

(a), (d): the total system

(b), (e): the lower boiling fraction (c), (f): the higher boiling fraction

TABLE 3.	Тне	RAMAN	SPECTRA	OF	THE	SYSTEMS	$AlEt_nCl_{3-n}$ -	+	$AlEt_mCl_{3-m} \cdot Et_2O$	(n, m=0, 1, 2, 3)	3)

C	C+-+-*1	Sample	Raman spectrum				
System	State*1	$rac{ ext{volume}}{ ext{m}l}$	Figure	Interpretation*2			
AlEtCl ₂ + AlEtCl ₂ ·Et ₂ O	Т	3	5a (=5b+5c)	1b + 1d + 3c + 3d			
$AlEtCl_2 + AlEtCl_2 \cdot Et_2O$	L	3	5b	1b + 1d			
$AlEtCl_2 + AlEtCl_2 \cdot Et_2O$	H	6	5c	3c + 3d			
$AlEt_2Cl + AlEt_2Cl \cdot Et_2O$	T	3	5d (=5e+5f)	1b + 3b			
$AlEt_2Cl + AlEt_2Cl \cdot Et_2O$	L	3	5e	1b			
$AlEt_2Cl + AlEt_2Cl \cdot Et_2O$	Н	6	5f	3b			
$AlEt_3 + AlEtCl_2 \cdot Et_2O$	${f T}$	6	- (=5d)	1b + 3b			
$AlEt_2Cl + AlEt_3 \cdot Et_2O$	T	6	6a	1b + 3a			
$AlEt_3 + AlEt_2Cl \cdot Et_2O$	\mathbf{T}	6	- (=6a)	1b + 3a			
$AlEtCl_2 + AlEt_3 \cdot Et_2O$	\mathbf{T}	6	6b = 5d	1b + 3b			
$AlCl_3 + AlEtCl_2 \cdot Et_2O$	L	3	_	1d			

- *1 T, the total system; L, the lower-boiling fraction of the system; H, the higher-boiling fraction of the system.
- *2 One of the spectra shown in Fig. 1a—1d and Fig. 3a—3d or some combination of them which agrees with the spectrum of the system studied.

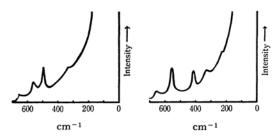


Fig. 6. The Raman spectra of the systems
(a) AlEt₂Cl+AlEt₃·Et₂O

(b) AlEtCl₂+AlEt₃·Et₂O.

The reverse reaction of the reaction (5), the reaction (5'), proceeds quantitatively to the right:

$$AlEt_3 + AlEtCl_2 \cdot Et_2O \rightarrow$$

$$AlEt_2Cl + AlEt_2Cl \cdot Et_2O$$
 (5')

The reaction (6) does not take place at all, although Davidson and Brown reported that the analogous reaction, (6'), did take place:¹¹²

$$AlEt_2Cl + AlEt_3 \cdot Et_2O \longrightarrow$$

$$AlEt_3 + AlEt_2Cl \cdot Et_2O$$
 (6)

 $AlMe_2Cl + AlMe_3 \cdot Me_2O \rightarrow$

$$AlMe_3 + AlMe_2Cl \cdot Me_2O$$
 (6')

The reverse reaction of the reaction (6), the reaction (6"), proceeds quantitatively to the

right:

$$AlEt_3 + AlEt_2Cl \cdot Et_2O \rightarrow$$

$$AlEt_2Cl + AlEt_3 \cdot Et_2O \qquad (6'')$$

The reactions (7) and (8) proceed quantitatively:

$$AlEtCl_2 + AlEt_3 \cdot Et_2O \rightarrow$$

$$AlEt_2Cl + AlEt_2Cl \cdot Et_2O \qquad (7)$$

$$AlCl_3 + AlEtCl_2 \cdot Et_2O \rightarrow$$

$$AlEtCl2 + AlCl3 \cdot Et2O$$
 (8)

As is apparent when one regards the redistribution reactions, (4), (5'), (6"), (7), and (8), by the reaction between AlEt_nCl_{3-n} and AlEt_mCl_{3-m}. Et₂O (n, m=0, 1, 2, 3) AlEt₂Cl is preferentially produced so long as there is a possibility of its formation, as in the cases of the reactions (4), (5'), (6"), and (7); if there is no possibility of AlEt₂Cl formation, as in the case of the reaction (8), AlEtCl₂ is produced. The tendency to produce the most stable complex possible can not be observed at all. The driving force of these redistribution reactions is still uncertain. If it is postulated that the stability of a dimer of $AlEt_nCl_{3-n}$ increases in the order $(AlCl_3)_2$, $(AlEt_3)_2 < (AlEtCl_2)_2 <$ (AlEt2Cl)2, the character of these redistribution reactions may be described as follows: the most stable possible dimer of $AlEt_nCl_{3-n}$ is produced.

The authors are indebted to Professor Takehiko Shimanouchi of the University of Tokyo and to Dr. Osamu Yamamoto of the Government Chemical Industrial Research Institute, Tokyo, for valuable discussions throughout this work.

¹¹⁾ N. Davidson and H. C. Brown, *ibid.*, **64**, 316 (1942).